Active Learning with the Probabilistic RBF Classifier
نویسندگان
چکیده
In this work we present an active learning methodology for training the probabilistic RBF (PRBF) network. It is a special case of the RBF network, and constitutes a generalization of the Gaussian mixture model. We propose an incremental method for semi-supervised learning based on the Expectation-Maximization (EM) algorithm. Then we present an active learning method that iteratively applies the semisupervised method for learning the labeled and unlabeled observations concurrently, and then employs a suitable criterion to select an unlabeled observation and query its label. The proposed criterion selects points near the decision boundary, and facilitates the incremental semi-supervised learning that also exploits the decision boundary. The performance of the algorithm in experiments using well-known data sets is promising.
منابع مشابه
Semi-supervised and active learning with the probabilistic RBF classifier
The probabilistic RBF network (PRBF) is a special case of the RBF network and constitutes a generalization of the Gaussian mixture model. In this paper we propose a semi-supervised learning method for PRBF, using labeled and unlabeled observations concurrently, that is based on the expectation–maximization (EM) algorithm. Next we utilize this method in order to implement an incremental active l...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملLearning on Probabilistic Labels
Classification is a fundamental topic in the literature of data mining and all recent hot topics like active learning and transfer learning all rely on the concept of classification. Probabilistic information becomes more prevalent nowadays and can be found easily in many applications like crowdsourcing and pattern recognition. In this paper, we focus on a dataset which contains probabilistic i...
متن کامل